Build OTBTF from sources¶
These instructions explain how to build on Ubuntu 18 with last CUDA drivers, TensorFlow r2.1 and OTB 7.1.0.
Warning
This section is no longer maintained.
You can take a look in the Dockerfile
to take notes how it's done with
up-to-date ubuntu versions.
Build OTB¶
First, build the release-7.1 branch of OTB from sources. You can check the OTB documentation which details all the steps. It is quite easy thank to the SuperBuild, a cmake script that automates the build.
Create a folder for OTB, clone sources, configure OTB SuperBuild, and build it.
Install required packages:
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install sudo ca-certificates curl make cmake g++ gcc git \
libtool swig xvfb wget autoconf automake pkg-config zip zlib1g-dev \
unzip freeglut3-dev libboost-date-time-dev libboost-filesystem-dev \
libboost-graph-dev libboost-program-options-dev libboost-system-dev \
libboost-thread-dev libcurl4-gnutls-dev libexpat1-dev libfftw3-dev \
libgdal-dev libgeotiff-dev libglew-dev libglfw3-dev libgsl-dev \
libinsighttoolkit4-dev libkml-dev libmuparser-dev libmuparserx-dev \
libopencv-core-dev libopencv-ml-dev libopenthreads-dev libossim-dev \
libpng-dev libqt5opengl5-dev libqwt-qt5-dev libsvm-dev libtinyxml-dev \
qtbase5-dev qttools5-dev default-jdk python3-pip python3.6-dev \
python3.6-gdal python3-setuptools libxmu-dev libxi-dev \
qttools5-dev-tools bison software-properties-common dirmngr \
apt-transport-https lsb-release gdal-bin
Build OTB from sources:
sudo mkdir /work
sudo chown $USER /work
mkdir /work/otb
cd /work/otb
mkdir build
git clone -b release-7.1 \
https://gitlab.orfeo-toolbox.org/orfeotoolbox/otb.git OTB
cd build
From here you can tell the interactively SuperBuild to use system boost, curl, zlib, libkml for instance.
If you don't know how to configure options, you can use the following:
cmake /work/otb/OTB/SuperBuild -DUSE_SYSTEM_BOOST=ON -DUSE_SYSTEM_CURL=ON \
-DUSE_SYSTEM_EXPAT=ON -DUSE_SYSTEM_FFTW=ON -DUSE_SYSTEM_FREETYPE=ON \
-DUSE_SYSTEM_GDAL=ON -DUSE_SYSTEM_GEOS=ON -DUSE_SYSTEM_GEOTIFF=ON \
-DUSE_SYSTEM_GLEW=ON -DUSE_SYSTEM_GLFW=ON -DUSE_SYSTEM_GLUT=ON \
-DUSE_SYSTEM_GSL=ON -DUSE_SYSTEM_ITK=ON -DUSE_SYSTEM_LIBKML=ON \
-DUSE_SYSTEM_LIBSVM=ON -DUSE_SYSTEM_MUPARSER=ON \
-DUSE_SYSTEM_MUPARSERX=ON -DUSE_SYSTEM_OPENCV=ON \
-DUSE_SYSTEM_OPENTHREADS=ON -DUSE_SYSTEM_OSSIM=ON -DUSE_SYSTEM_PNG=ON \
-DUSE_SYSTEM_QT5=ON -DUSE_SYSTEM_QWT=ON -DUSE_SYSTEM_TINYXML=ON \
-DUSE_SYSTEM_ZLIB=ON -DUSE_SYSTEM_SWIG=OFF -DOTB_WRAP_PYTHON=OFF
Then you can build OTB:
Build TensorFlow with shared libraries¶
During this step, you have to build Tensorflow from source except if you want to use only the sampling applications of OTBTensorflow (in this case, skip this section).
Bazel¶
First, install Bazel.
wget https://github.com/bazelbuild/bazel/releases/download/0.29.1/bazel-0.29.1-installer-linux-x86_64.sh
chmod +x bazel-0.29.1-installer-linux-x86_64.sh
./bazel-0.29.1-installer-linux-x86_64.sh --user
export PATH="$PATH:$HOME/bin"
If you fail to install properly Bazel, you can read the beginning of the instructions that present alternative methods for this.
Required packages¶
There is a few required packages that you need to install:
sudo python3 -m pip install --upgrade pip
sudo python3 -m pip install pip six numpy wheel mock keras future setuptools
For a pure python3 install, you might need to workaround a bazel bug the following way:
Build TensorFlow¶
Create a directory for TensorFlow.
For instance mkdir /work/tf
.
Clone TensorFlow.
Now configure the project. If you have CUDA and other NVIDIA stuff installed
in your system, remember that you have to tell the script that it is in
/usr/
(no symlink required!). If you have CPU-only hardware, building Intel
MKL is a good choice since it provides a significant speedup in computations.
Then, you have to build TensorFlow with the instructions sets supported by your CPU (For instance here is AVX, AVX2, FMA, SSE4.1, SSE4.2 that play fine on a modern intel CPU). You have to tell Bazel to build:
- The TensorFlow python pip package
- The libtensorflow_cc.so library
- The libtensorflow_framework.so library
bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma \
--copt=-mfpmath=both --copt=-msse4.1 --copt=-msse4.2 \
//tensorflow:libtensorflow_framework.so \
//tensorflow:libtensorflow_cc.so //tensorflow:libtensorflow.so \
//tensorflow/tools/pip_package:build_pip_package \
--noincompatible_do_not_split_linking_cmdline
You might fail this step (e.g. missing packages). In this case, it's
recommended to clear the bazel cache, using something like
rm $HOME/.cache/bazel/* -rf
before configuring and building everything!
Pip package¶
Build and deploy the pip package.
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
pip3 install $(find /tmp/tensorflow_pkg/ -type f -iname "tensorflow*.whl")
C++ API¶
First, download and build TensorFlow dependencies.
/work/tf/tensorflow/tensorflow/lite/tools/make/download_dependencies.sh
/work/tf/tensorflow/tensorflow/lite/tools/make/build_lib.sh
Then, build Google Protobuf
mkdir -p /work/tf/installdir
cd /work/tf/
wget https://github.com/google/protobuf/releases/download/v3.8.0/protobuf-cpp-3.8.0.tar.gz
tar -xvf protobuf-cpp-3.8.0.tar.gz
cd protobuf-3.8.0
./configure --prefix=/work/tf/installdir/
make install -j $(grep -c ^processor /proc/cpuinfo)
Then, prepare a folder with everything (include, libs)
mkdir -p /work/tf/installdir/lib
mkdir -p /work/tf/installdir/include
cp bazel-bin/tensorflow/libtensorflow_cc.so* /work/tf/installdir/lib
cp bazel-bin/tensorflow/libtensorflow_framework.so* /work/tf/installdir/lib
cp -r bazel-genfiles/* /work/tf/installdir/include
cp -r tensorflow/cc /work/tf/installdir/include/tensorflow
cp -r tensorflow/core /work/tf/installdir/include/tensorflow
cp -r third_party /work/tf/installdir/include
cp -r bazel-tensorflow/external/eigen_archive/unsupported /work/tf/installdir/include
cp -r bazel-tensorflow/external/eigen_archive/Eigen /work/tf/installdir/include
cp -r tensorflow/lite/tools/make/downloads/absl/absl /work/tf/installdir/include
Now you have a working copy of TensorFlow located in /work/tf/installdir
that is ready to use in external C++ cmake projects :)
Build the OTBTF remote module¶
Finally, we can build the OTBTF module.
Clone the repository inside the OTB sources directory for remote modules:
/work/otb/OTB/Modules/Remote/
.
Re configure OTB with cmake of ccmake, and set the following variables
- Module_OTBTensorflow to ON
- OTB_USE_TENSORFLOW to ON (if you set to OFF, you will have only the sampling applications)
- TENSORFLOW_CC_LIB to
/work/tf/installdir/lib/libtensorflow_cc.so
- TENSORFLOW_FRAMEWORK_LIB to
/work/tf/installdir/lib/libtensorflow_framework.so
- tensorflow_include_dir to
/work/tf/installdir/include
Re build and re install OTB.
Done !Don't forget to add some important environment variables, and this is finished.
export PATH="$PATH:/work/otb/superbuild_install/bin/"
export PYTHONPATH="$PYTHONPATH:/work/otb/superbuild_install/lib/otb/python:/work/otb/otb/Modules/Remote/otbtf/python"
export OTB_APPLICATION_PATH="$OTB_APPLICATION_PATH:/work/otb/superbuild_install/lib/otb/applications"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/work/otb/superbuild_install/lib/:/work/tf/installdir/lib/"
Check that the applications run properly from command line.
The following output should be displayed:
Multisource deep learning classifier using TensorFlow. Change the OTB_TF_NSOURCES environment variable to set the number of sources.
Parameters:
-source1 <group> Parameters for source #1
MISSING -source1.il <string list> Input image (or list to stack) for source #1 (mandatory)
MISSING -source1.rfieldx <int32> Input receptive field (width) for source #1 (mandatory)
MISSING -source1.rfieldy <int32> Input receptive field (height) for source #1 (mandatory)
MISSING -source1.placeholder <string> Name of the input placeholder for source #1 (mandatory)
-model <group> model parameters
MISSING -model.dir <string> TensorFlow model_save directory (mandatory)
-model.userplaceholders <string list> Additional single-valued placeholders. Supported types: int, float, bool. (optional, off by default)
-model.fullyconv <boolean> Fully convolutional (optional, off by default, default value is false)
-output <group> Output tensors parameters
-output.spcscale <float> The output spacing scale, related to the first input (mandatory, default value is 1)
MISSING -output.names <string list> Names of the output tensors (mandatory)
-output.efieldx <int32> The output expression field (width) (mandatory, default value is 1)
-output.efieldy <int32> The output expression field (height) (mandatory, default value is 1)
-optim <group> This group of parameters allows optimization of processing time
-optim.disabletiling <boolean> Disable tiling (optional, off by default, default value is false)
-optim.tilesizex <int32> Tile width used to stream the filter output (mandatory, default value is 16)
-optim.tilesizey <int32> Tile height used to stream the filter output (mandatory, default value is 16)
MISSING -out <string> [pixel] output image [pixel=uint8/uint16/int16/uint32/int32/float/double/cint16/cint32/cfloat/cdouble] (default value is float) (mandatory)
-inxml <string> Load otb application from xml file (optional, off by default)
-progress <boolean> Report progress
-help <string list> Display long help (empty list), or help for given parameters keys
Use -help param1 [... paramN] to see detailed documentation of those parameters.
Examples:
otbcli_TensorflowModelServe -source1.il spot6pms.tif -source1.placeholder x1 -source1.rfieldx 16 -source1.rfieldy 16 -model.dir /tmp/my_saved_model/ -model.userplaceholders is_training=false dropout=0.0 -output.names out_predict1 out_proba1 -out "classif128tgt.tif?&streaming:type=tiled&streaming:sizemode=height&streaming:sizevalue=256"